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Heterostructures such as resonant tunneling diodes, quantum well photodetectors and
lasers, and cascade lasers break the symmetry of the crystalline lattice. Such break in lattice
symmetry causes a strong interaction of heavy-, light- and split-off hole bands. A resonant
tunneling diode is used as a vehicle to study hole transport in heterostructures including
the subband dispersion transverse to the main transport direction. Four key findings are
demonstrated: (1) the heavy and light hole interaction is shown to be strong enough to re-
sult in dominant current flow off thE€ zone center (more holes flow through the structure
at an angle than straight through), (2) explicit inclusion of the transverse momentum in the
current integration is needed, (3) most of the current flow is due to injection from heavy
holes in the emitter, and (4) the dependence on the ahglethe transverse momentum
k is weak. Two bandstructure models are utilized to demonstrate the underlying physics:
(1) independent/uncoupled heavy-, light- and split-off bands, and (2) second-nearest neigh-
bor sp3s* tight-binding model. Current—voltage-{/) simulations including explicit inte-
gration of the total energi, transverse momentufk| and transverse momentum angle
are analyzed. An analytic formula for the current densitlk) as a function of transverse
momentumk is derived and utilized to explain the three independent mechanisms that
generate off-zone-center current flow: (1) nonmonotonic (electron-like) hole dispersion,
(2) different quantum well and emitter effective masses, and (3) momentum-dependent
guantum well coupling strength. The analytic expression is also used to generate a com-
pletel -V characteristic that compares well to the full numerical solution. The Fermi level
and temperature dependence onlth¥ is examined. Finally a simulation is compared to
experimental data.
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1. Introduction
1.1. Nanoelectronic modeling (NEMO)

While silicon device technology dominates the commercial microprocessor and memory market, semicon-
ductor heterostructure devices maintain their niche for light detection, light emission, and high-speed data

0749-6036/01/030187 + 30 $35.00/0 © 2001 Academic Press



188 Superlattices and Microstructures, Vol. 29, No. 2, 2001

transmission. Material variations on an atomic scale enable the quantum mechanical functionality of devices

such as resonant tunneling diodes (RTDs), quantum well infrared photodetectors, quantum well lasers, and
heterostructure field effect transistors. The production of these heterostructure devices is enabled by the ad-
vancement of material growth techniques, which opened a vast design space of material compositions, layer
thicknesses and doping profiles. The full experimental exploration of this design space is unfeasible and a

reliable design tool is needed.

The need for a device modeling tool has prompted a device modeling project at the Central Research Lab-
oratory of Texas Instruments (which transferred to Raytheon Systems in 1997). NEMO was developed as
a general-purpose quantum mechanics-based 1D device design and analysis tool from 1993-97. The tool is
available to US researchers by request on the NEMO webHitelEMO is based on the nonequilibrium
Green function approach, which allows a fundamentally sound inclusion of the required physics: bandstruc-
ture, scattering, and charge self-consistency. The theoretical approach is documented 1 Refhile
some of the major simulation results are documented in Ref)]. NEMO development is presently con-
tinued at the Jet Propulsion Laboratory towards the modeling of light detection and emission devices.

The work presented here was enabled by the implementation of parallelism in NEMO on simultaneous,
various levels: voltage, transverse momentum integration and energy integration. The use of massively paral-
lel computers enabled the thorough exploration of the state space in total @enghtransverse momentum
k for a significant number of bias points.

1.2. Why quantum mechanical hole transport?

In most high-speed quantum devices an attempt is made to utilize the high electron mobility in 11I-V
materials. Quantum mechanical carrier transport research has, therefore, focused on pure electron transport.
Optical devices, however, typically involve quantum states in the valence bands. To begin the study of quan-
tum mechanical electron and hole transport in laser structures using NEMO the pure hole transport in a
hole-doped RTD is examined.

It is well known that hole transport is strongly influenced by coupling between the light hole (LH), heavy
hole (HH) and split-off (SO) valence bandklf-14]. Band coupling occurs due to translational symmetry
breaking inherent in any interesting electronic device. Valence bands in semiconductors are also intrinsically
coupled via the spin—orbit interaction. Envelope function representations have been used extensively in much
of the published work on hole transpoftd-22]. This paper is an extension of previous work by Kiledjian
et al. [23, 24] who use a nearest neighbor sp3s* empirical tight-binding basis which includes the spin—orbit
interaction to all orders and incorporates wavefunction coupling at interfaces through orbital interactions.
To better fit the complicated valence band dispersion we include both nearest and second-nearest neighbor
interactions 25]. Subband energies and widths are calculag] §s a function of transverse momentum
allowing for a detailed and intuitive analysis of hole transport mechanisms.

1.3. Overview of the paper

Sections2 and3 discuss approximations for calculating current density and details our approach for ex-
plicitly including its dependence on transverse momentum. Sedtiera brief review of the complexities
involved in quantum transport through valence band derived states. The density of states is used to identify
the symmetry and number of nodes of the confined states and it is related to the transmission coefficients.
Hole anisotropy and its effect on quantum well subbands is discussed. The complicated subband structure re-
sults in a strong dependence of transmission characteristics as a function of transverse momenturb. Section
details features in current density versus total energy and transverse momentum for a simple RTD structure.
Failure of the Esaki—Tsu approximation and significant current contributions off-zone-center are shown. In
Section6, an analytic expression for current density as a function of transverse momentum is derived and
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used to better understand the numerical results of Sebti@ections7 and8 discusses the emitter Fermi

level and temperature dependence of hole transport, respectively. In Seastiertest the validity of the

axial symmetry approximation by calculating the dependence of the current density on the axial incidence
angle. A comparison between theory and experiment is examined in S&€idetailed discussions on

the bias dependence of the resonance energies and widths are deferred to AppgeaditBsrespectively.
AppendixC tabulates the sp3s* second-nearest neighbor parameters used in this work and lists the associated
material parameters such as bandgaps and effective masses.

2. The central quantity: current density J(k)

Typical high-performance RTDs used for mema2y][and logic P8] devices are based on electron (rather
than hole) transport in direct gap material systems. Electron states are occupied clos€ tootheand
the bands can typically be assumed to be isotrbgtor high current density devices operated at room
temperature the effects of incoherent scattering inside the central RTD régési (] have been shown to be
negligible while bandstructure effects such an nonparabolicity and complex band wrapping are ddsrinant [
7]. In such a case the current can be compugd]using an expression of the form

J <x/dEfd¢fkdkT(E,k, ®) (fL(E) — fr(E)) 1)
cx/dEfkdkT(E,k)(fL(E) — fr(E)) )
:/dE/kko(E,k) A3)

wherek is the electron momentum transverse to the transport direction normalized to the umliye€l| ¢ is
the momentum anglé is the total energyT is the transmission coefficient, arfd,r is the Fermi function
in the left/right contact. A discussion of the dependence of the transmission coefficigrisateferred to
Section9 and for now it is assumed that the transmission coefficient is independgnt of

The transmission coefficieit(E, k) may be expensive to compute, since it may contain sharp resonances
(10°—10-3 eV) that have to be resolved well in an energy range of typically 1 eV. During the NEMO project
algorithms that locate2g] and resolve 29 the resonances expedite the computatiofi ¢, k = cons}. It
is therefore convenient for numerical reasons to reverse the order of integration i8) @l to define an
intermediate quantityl (k) as follows:

J(K) =/dEJ(E, k) (4)
such that
J x / kdk J(k). 5

This quantityJ(k) is not only numerically convenient, but it also bears physical insight as to ‘where’ the
carrier transport occurs in k-space. It will be shown analytically in Seciohand6.2 that for an electron

RTD the functionJ (k) is peaked ak = 0 and monotonically decreases withThis behavior indicates that

the dominant current contribution arises from carriers at the Brillouin zone cEntesr holes, however, it

will be shown that] (k) can exhibit sharply peaked featumgside(k > 0) the Brillouin zone centdr. This

indicates that more holes traverse the structure at an angle than straight through the heterointerfaces. This is
one of the central results of this paper.

A typical barrier material in GaAs and InP substrate material systems is AlAs, which has an indirect bandgap. However,
the contacts and the quantum well are typically direct bandgap materials.
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3. Tsu—Esaki formula

One common approach in reducing the required CPU time needed to compute a cdmyleteracter-
istic is the assumption of parabolic transverse subbands such that the transmission coefficient has an analytic,
parabolic transverse momentum dependefi¢&, k) = T (E — h%k2/2m*, k = 0). Under this assumption
the transverse momentum integration in eghdan be carried out analytically to result in the so-called
Tsu—Esaki 80] formula:

14 eEF—E)/KT
). (6)

J O('OZD/dET(E’kzo)ln(1+e(EF—E—qV)/kT

The Tsu—Esaki 1D integration formula is capable of providing qualitatively correct results for electron de-
vices given the restrictive assumption that subband alignmewtthe primary transport mechanisiy B1-
33). Technologically relevant RTDs that show negative differential resistance at room temperature all exhibit
a triangular emitter well such that there is a large 2D to 2D subband tunneling contribution from the emit-
ter to the central resonance. To achieve quantitative agree®efjtjetween simulation and experimental
data for such RTDs full 2D integrations in energyand transverse momentuiraccording to eqn3) must
be performed. This paper will show in SectiérB an example of good agreement between the Tsu—Esaki
approximation and the full band integration for a structure that has flat band conditions in the emitter and
therefore provides a 3D emitter to 2D quantum well tunneling process. We emphasize here in advance that
such a simulation is included for pedagogical reasons only, to show the simple behaliky fufr electrons.
The rest of the paper underlines that the analytical Tsu—Esaki integration over the transverse momentum be-
comes completely invalid for hole transpo2g[ 24].

4. Spectral quantities: density of states, transmission, and subbands

4.1. Independent, uncoupled single bands

The model RTD considered here consists of 10 monolayer (ml) AlAs barriers with a 20 ml GaAs well.
To avoid complications due to triangular notch states outside the RTD a linear potential drop is aplied.
degenerate hole Fermi level of48meV is assumed corresponding to a doping df1on—3.

The simplest approach to hole transport available in NEMO is the independent treatment of the LH and HH
bands in a single-band tight-binding basis. Within the single-band model the effective masses and band offsets
can be freely chosen. For the LH band simulation the following effective masses and valence band offset are
used:mgaas = 0.071, maas = 0.15, andAE, = —0.545 eV. For the HH simulation the corresponding
valuesmgaas = 0.41, maas = 0.48, andAE, = —0.545 eV are used. These masses correspond to values
that our sp3s* second-nearest neighbor predicts in the [001] direction (seelTalA@pendixC).

Figure 1 shows the zero-bias density of states and transmission coefficients for the independent single-
band models. The density of states shows the nodal structure of the central RTD resonances. Each of the
resonances corresponds to a peak in the transmission curve. The LH density of state&)(&igl trans-
mission coefficient (FiglB) look similar to the density of states presented in Fig. 2 of Rgf.The HH
mass is significantly larger than the light mass resulting in a smaller energy separation between the confined
statest The barriers are much more opaque for the heavy electrons than the light electrons resulting in much
stronger confinemeRThis stronger confinement reveals itself in a significantly larger intrinsic lifetime of the

TThere is no implicit limitation in NEMO to a linear potential drop. Charge self-consistent simulations of the Hartree
and exchange and correlation potential are presented in Refs7].

*In an infinite barrier square well of widththe energy separation iSEj, 1 = Enyg — En h272/2ma o 1/m.

S8Fora single square barrier of thicknesthe exponentiadr"d decay constant is defined as= /2mAE /h? o /m.
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Fig. 1. Independent single-band density of states and transmission coefficients. A and B, LH; C and D, HH. On the gray scale dark
(light) corresponds to high (low) density of states. Symmetries of the ground excited hole states are evident and aligned in energy with
the transmission resonances. HH resonance are much narrower (resonance VAN P, 4.9 x 1072, 5.0 x 1074, 7.2 x 1073,

and 23 x 10~ 1 meV) than LH resonances (resonances widtt%>3102 and 59 x 101 meV).

resonance state, or equivalently in a much smaller resonance width. Indeed the NEMO resonan@sfinder |
indicates that the LH ground state is four orders of magnitude wider than the HH ground state as indicated in
the caption of Figl.

4.2. Comparison of single-band and multiband transmission coefficients

The RTD heterointerfaces as well as applied and built-in potentials break the translational symmetry in the
growth direction. This symmetry breaking and the spin—orbit interaction couples the LH, HH and SO bands.
To properly model such coherently coupled bands the multiband tight-binding sp3s* model is employed.

Figure2 compares the previously calculated independent single-band transmission coefficientdBf Fig.
and D to a transmission coefficient based on the second-nearest neighbor tight-binding model. The general
features of the multiband transmission coefficient resemble the sum of the individual LH and HH bands at
low energies witlE < 0.2 eV. On closer inspection it becomes clear, however, that the resonances one would
associate with HH states do not result in a unity transmission coefficient. While the LH resonance transmis-



192 Superlattices and Microstructures, Vol. 29, No. 2, 2001

= [ HHI T~ *

Hole energy (eV)

20 25107107 107 10" 10”7 107 107 10"
Position Transmission Transmission

Fig. 2. Density of states A and transmission B computed in the sp3s* model. Resonance linewidths are HHA15 P, 45%x 1074,
1.8x 103,12 x 1072, 28 x 100 meV, and LH1-4: 54 x 1072, 1.7 x 10°, 4.6 x 10°, 1.9 x 10 meV, and SO18.2 x 10-2 meV.
Transmission zeros are labeled as z. C, Transmission coefficient in the independent single-band model i®r=nEid, for the LH
and HH effective mass model, as well as a single-band SO band modehgitlis = 0.14, Egaag,, = —0.366 eV,mpas = 0.25, and
Ealasg, = —0.883 eV.

sion looks close to (labeled as ‘Zz’ in Fig. 2B) one on the logarithmic scale it does not quite reach unity.
Furthermore there are some transmission zeros evident in the multiband 8@ P3]. These features are

all characteristics of the Fano lineshape which occurs when a bound state is coupled to a cor8#ulim |

the case of hole transpal the resonances are of the Fano type. Transmission zeros occur for isolated Fano
resonances. The zeros move off the real axis in conjugate pairs for overlapped Fano res@@hntes [
explains the lack of transmission zeros for the LH resonances. Note that unlikegimodel P0] the sp3s*

model couples the LH, HH, and SO bandskoce 0 even for zero bias due to symmetry breaking and proper
inclusion of the spin—orbit interaction.

The density of states in Fi@A shows the nodal symmetries of the LH, HH, and SO resonances. From
the nodal symmetry one can identify the various LH, HH and SO resonances in the multiband transmission
coefficient. Compared to the single-band results, the multiband LH resonances LH2 and LH3 move to lower
hole energies. This can be explained by the strong LH band nonparabolicity that will be discussed in the next
section in more detail. The HH2—4 states move slightly irojygositedirection which cannot be explained by
band nonparabolicity. In SectioBs4-6.6and AppendixB we will show that these states are strongly coupled
to the LH states as visible by strongly enhanced resonance linewidths. Such strong coupling corresponds to
a lighter hole mass which causes the resonance energies to go up in energy more than states based on pure
HH effective masses.

Note that the standing wave patterns outside the RTD of the de-coupled LH and HHs i\Rigd C are
now washed out in FigR. Only a weak standing wave pattern can be observed, indicating strong mixing of
HH and LH states outside the RTD structure. For a larger picture of the typical standing wave pattern outside
an RTD we refer the reader to Fig. 2 of Ref].[A break in the standing wave pattern outside the RTD also
shows the on-set of the SO band at about 0.366 eV.
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Fig. 3. A, LH dispersion surface in the [100] and [010] plane. B, Slices through the surface in Alg{dogthree different momenta,

kz = 0,kz = 0.04 andk; = 0.08.kz = 0.04, andk; = 0.08 correspond to the first two quantized states in the model RTD presented
here. Dashed curves indicate a perfectly parabolic, anisotropic dispersion computed with a LH méss-d3.07. Note the large
discrepancy between the nonparabolic bands and the parabolic bands ak leayes. The energy and curvature of the first excited
subband wittkz; = 0.08 is modeled completely incorrectly using an anisotropic parabolic dispersion.

4.3. LH and HH anisotropy and their effects on the transverse subbands

The LH and HH bands in typical IlI-V semiconductors are anisotropic. Hole mass measurements are avail-
able B5] for a variety of material systems in the [100], [110], and [111] directions. TaliteAppendixC
contains measure®}$] HH, LH, and SO band masses and their values in our sp3s* second-nearest neighbor
tight-binding models for the case of GaAs and AlAs. We use the second-nearest neighbor model since it has
been showndb5, 36] that it offers a higher degree of freedom to independently adjust masses in the [100],
[110] and [111] directions compared to the nearest neighbor tight-binding model.

We emphasize here that the overall results presented in this paper such as off-zone-center current flow and
transverse momentum dependencerareunique to the second-nearest neighbor model. We have verified
that they can be observed in the nearest neighbor sp3s* model as well. However, the hole anisotropy is not
represented as well in the nearest neighbor model.

The introduction of a double barrier heterostructure causes a quantization of the crystal momentum in one
(the growth/longitudinal) direction. In the transverse direction the plane wave crystal momentum remains a
good quantum number and the dispersion is described by subbands. In this section the construction of these
subbands including the effects of the LH and HH anisotropy is illustrated. To present the physical argument
for the shape of the dispersion we start from a bulk band structure that includes the band anisotropy.

Figure 3A shows a surface plot of the LH bulk dispersion in the [100]/[010] plane computed with our
second-nearest neighbor sp3s* model. FiggBeshows three slices taken through the [010] axis plotted
along [100] through the surface shown in A. If the LH band were perfectly parabolic3Rig/ould show
an anisotropic paraboloid, and slices along this paraboloid would be perfect parabolas as indicated by the
dashed curves in Fi@B.

The heterostructure growth quantizes states along the growth direction. Assuiae thdi (k; ~ 7/A ~
0.04) is the ground state enerbgf the man-made resonator of length E» = E(k, = 2k; ~ 0.08) and
Es = E(ks = 3k; =~ 0.12) are the first and second excited state energy, respectiZgland E, are

TThe resonator we consider in the numerical studies has a width of 20 atomic monolayer@@a) of GaAs which
corresponds to a value & ~ 7;/72 = % = 0.05, wherea is the atomic unit cell. However, the wavefunctions do
penetrate into the barriers significantly and we get better agreement between the analytic dispersions and the numerical
dispersions ak; ~ 0.04 which corresponds to a 2% (= 25a) monolayer well, or a penetration of the wavefunction in

the barriers of 2.5 monolayers at each side.



194 Superlattices and Microstructures, Vol. 29, No. 2, 2001

S _0.1t k;=0.08 -~ -
S =
& [ —
= ~—
0_02 kZ=012 ~
=
84| = ~
-03f . T.o— ~
k,=0.16 -~ B
~

0.00 0.02 0.04 0.06  0.08
Momentum k,

Fig. 4. A, HH dispersion surface in the [100] and [010] plane. The ridge in the [110] direction is evidence of the heavier mass in the
[110] direction than the [100] direction. B, Slices through the surface in A akgnipr five different momentak; = 0, kz; = 0.04,

kz = 0.08,kz; = 0.12, andk; = 0.16.k; # 0.0 correspond to the first quantized states in the model RTD presented here. Dashed
curves indicate a perfectly parabolic, anisotropic dispersion computed with a HH ma$s-6f0.41. Note the electron-like behavior
compared to the perfect parabolic behavior.

depicted in Fig3B by heavy curves. The same figure shows perfect parabolic dispersioBg &rdE; in

dashed curves. The anisotropy of the LH band flattens out the transverse subband significantly, increasing
the effective mass in the transverse direction. Movement down in energy of the LH2 and LH3 resonances
was already seen in the comparison of transmission coefficients i2E-igs. C.

The transverse subband dispersion becomes more complex for the HH case 4Rigin@wvs a surface
plot of the HH dispersion in the [100])/[010] plane. The heavier mass in the [110] direction compared to the
[100] direction clearly results in a ridge-like feature on the 2D surface. FigBrehows four slices taken
through the [010] axis plotted along [100] through the surface shown in A. Again the dispersion is quantized
byk; ~ /A ~ 0.04 as the ground state energy of the man-made resonator of langth= 2k;, ks = 3ki,
andky = 4k are the first, second, and third excited state respectively. In the case of HHs the anisotropy
of the bands produces some unintuitive results: the excited HH statesupavesnergy rather than down
in energy as the transverse momentum is increak2d[/]. For comparison the dashed curves in the insert
indicate a perfectly parabolic dispersion with the hole mase*of 0.41. The electron-like behavior of the
excited state subbands is clearly evident.

The next complication in the transverse subband dispersion is due to the coupling of the LH and HH bands
due to the translational symmetry breaking. The transverse dispersion is computed for a hole GaAs/AlAs
RTD consisting of 10 monolayer barriers and a 20 monolayer well. Figwgleows the plots of Fig3B
and4B overlayed compared to the RTD transverse subband dispersion. The coupling of the bands results in
the mixing of LH and HH states and in anticrossings of the transverse subbands. This transverse subband
dispersion shows a rich structure that is anything but parabolic. The question now arises to the effects of
these nonparabolic subbands on the electron transport through the model RTD, which is the subject of the
rest of this paper.

Note that the states in FigB are labeled in a sequence of HH1, LH1, HH2, HH3, LH2 according to their
resonance linewidth and nodal feature size, while BRjreverses the order of LH1 and HH2 according to
transverse momentum behavior. From the transverse dispersion BBHigs clear that there is already an
anticrossing of HH2 and LH1 at zero transverse momentum and these states are strongly interacting. From
now on we will use the labeling in Fi$B according to the transverse momentum behavior and defer a more
detailed discussion to AppendB
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voltage is applied. A, Transmission coefficidntE, k = 0). B, Transverse electron subband. A small nonparabolicity is visible for the
second state compared to the ground state. C, Transmission coefficierit = 0.039). The curve is qualitatively identical to A except

for the shift in energy. D, E, and F are the equivalents to A, B, and C for the hole RTD. The transmission coefficient in F is clearly not
just an energy shifted version of the transmission coefficient of D. Spectral features have significantly shifted.

4.4, Transverse momentum-dependent transmission coefficients

Previous sections discussed the coupled HH and LH transmission coefficient for zero transverse momen-
tum (Sectiord.2) and the nontrivial HH and LH transverse subband dispersion (Se¢t8nThis section
combines these two aspects and demonstrates the strong momentum dependence of the transmission coeffi-
cients R4]. Figure6 demonstrates this strong dependence by comparison to an electron RTD.

The electron RTD considered in this case is identical to the previously considered hole RTD except that the
hole dopant is replaced by electron dopant and the AlAs barriers are reptycath 4Gay sAs. Figure6A
shows the familiar transmission coefficient through an electron RTD at zero transverse momentunéB-igure
shows the expected transverse dispersion for the ground and first excited state in a GaAs/AlGaAs RTD. Some

TThe use of AlAs barriers would introduce X states in the barriers which would clutter up the physical picture without

further insight.
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nonparabolicity is evident in the first excited state. Figh@eshows the transmission coefficient for a trans-
verse momentum d€ = 0.039. This transmission coefficient appears qualitatively to be just energy shifted
from the one in Fig6A disregarding nonparabolicity in the second state. That is exactly the assumption
that enters into the derivation of the Tsu—Esaki formula (&) Note, however, that the transmission co-
efficient doesnot reach unity. We also refer back to our discussion on the validity of the approximation in
Section3.

The lower three panels in Fig.show the equivalent transmission coefficients and subband dispersion for
the hole RTD. Unlike the electron case the transmission coefficient shown i6FFg not merely an energy
shifted version of the zero transverse momentum case; in fact it has little resemblance at all. The energies and
widths of the individual resonances are modified significantly. The resonance energiesir €dgrespond
to the dispersion in FigsE with the dashed vertical line kt= 0.039. The spin splittintin the dispersion of
Fig. 6E results in double peaks of the transmission coefficient.

The strong transverse momentum dependence on the transmission coefficient showBRrnHigesult
in an interesting dependence of the current flow distribution in momentum and energy as discussed in the
next section. A comparison between the momentum dependence of the electron and hole current flow based
on their different dispersions can also be found in Re&f).[

We have also examined the density of states and the structure of the eigenstate® @89 corresponding
to Fig. 6F and found that the nodal symmetries that are visible in the density of states shown 2raFeg.
completely broken. We expect this break in the symmetry to have significant effects on the strength of optical
matrix elements and leave further discussion to a later publication.

5. Current densities

The previous section showed a rich structure in the transverse hole dispersion and transmission coeffi-
cients. In this section the transmission coeffici€dE, k) is converted into a current densigy E, k) and
interesting physical features due to this structure are discussed in the context of: (1) features in the total
energyE integration, (2) features in the momentum-dependent current deh&ityand finally (3) features
in the | -V characteristic.

5.1. Transverse momentum-dependent current carrying channels

Figure7 demonstrates how the momentum dependence distributes the current flow through the hole RTD
over various different energies in the case of a carrier temperature of 300 K. Panels A and Crafteigy.
the current density) (E, k) = T(E, k)(fL(E) — fr(E)) for two different transverse momenta at a small
applied voltage of 0.011 V. Except for a small modification due the applied bias and the exponential energy
modulation by the Fermi function (see the dashed curves indicating the Fermi functions as 4.2, 77, and 300 K)
the current densities shown in FigA and C resemble the transmission coefficients in Bigyand F well.

Figure 7B and D shows the running integrald(€, k) = fio dE'J(E’, k)) as a function of energi
corresponding to FigZA and C. The running integral provides a simple way to analyze the importance of
the various energy channels through the structure. Channels/resonances that carry significant current will
contribute significantly to the running integral. While the zero transverse momentum case shows only one
significant energy channel (single-step function) the nonzero transverse momentum case shows three differ-
ent significant channels. Figui and D show that the spectrum of transverse hole channels is changed

TThe asymmetry of the applied bias has split the two spin states. Note that there is no magnetic field selection in these
simulations. The spin degenerate statels at 0 are split due to the translational symmetry breaking at 0. We use

the notationt, | as a shorthand to identify the two states. Since there is no selecting magnetic field we assume that, for
example, LH1t actually consists of a linear combination of up and down spins.
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Fig. 7. A, Current densityJ(E, k) for k = 0 as a function of energf at a bias of @011 V and a temperature of 300 K on a log
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in arbitrary units. The major current contribution is occurring at one energy as indicated by the step. C, Same as A at a transverse
momentumk = 0.04. Note that the curve igot an energy shifted replica of A but has significantly different features. D, Running
integral of C. Significant current flow occurs at three different energies as indicated by the three distinct steps.

gualitatively and that the energy amdimberof hole transport channels is modified significantly by the
transverse momentum change. For electron transport one would only observe almost identical step functions
that are shifted in energy according to the transverse dispersion. The running integral showrvid iSig.
clearly not a shifted version of the integral shown in FiB. The Tsu—Esaki approximation to the transverse
momentum integration (eqi®)) is therefore expected to break down completely.

5.2. Hole transport current—voltage characteristics

With the discussions in the previous sections it is fairly clear that the current ddrikjtgan be expected
to have significant features in it. Figu8erepresents two of the central results of this paper: (1) the current
density J(k) can be sharply spiked outside the zone cehtat k # 0 indicating that more holes traverse
the structure at an angle than straight through, similar to an indirect bandgap material, and (2) to capture this
physics one must perform an explicit integration over the transverse momentum.

Figure 8A shows twol -V characteristics computed at 4.2 K with (solid curve, eg)) &nd without
(dashed curve, eqre)) explicit integration over the transverse momentum on a logarithmic scale. The full
integration with the transverse momentum shows a significantly enhanced current flow and current features
that do not even show up in the analytic transverse integration. The origin of these additional channels is
depicted in the color contour plot of the current denditi) of eqn @) as a function ok and applied voltage
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in Fig. 8B. Sharply defined streaks of current flow are visible in the momentum space. The current streaks
resemble the transverse subband dispersion if the voltage axis is converted into an energy axis (with a factor
of 0.5, due to the linear potential drop).

The key information to take from Fi@ is to realize that the current densilyk) has maxima that aneot
atk = 0. This is shown explicitly by a cut through the contour plot at a constant voltage of 0.2 V iBEig.
The current density is sharply peaked at a transverse momentum okako016 as visible on a linear and
logarithmic scale. These sharp peaks are completely ignored in the analytical Tsu—Esaki integration. In fact
the dashed curve in Fi@A can be considered a cut through the contour of BRjat a constant transverse
momentumk = 0. Figure8D emphasizes the importance of the full band integration one more time by
showing thel -V characteristic from Fig8A on a linear scale.

6. An analytic expression for the current densityJ (k)
6.1. Derivation

While the numerical simulation results appear acceptable, they do not provide good physical insight into
the processes that generate the off-zone-center current flow. To better understand the behavior of the current
density J(k) as a function of the transverse momentkian analytic expression is derived. The formula is
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derived by starting from eqr2] assuming a Lorentzian shaped transmission coefficient of the form

1

1+ (BeEl)y®

T(E, k) = (7)

whereE; (k) andI'(k), the momentum-dependent resonance energy, and resonance linewidth, are assumed
to be independent of the transverse momentum direcfipfor simplicity. Also for simplicity we assume

zero temperature and that the bias is high enough to neglect back injection from the coligctorQ]. In

the case of electron flow above the momentum-dependent conduction banB&kigene can the write:

Er dE

J(k) x U(EF — E¢(k)) 1L (E-E(K\2 °
FoRe Eelo 1+ (EE0)? X

Er (k) — Ec(k E-E
= U(EF — E¢(K)) T'(K) (atan% - ata%) ©

whereu is the Heaviside function. Reversing the energy scales results in a similar expressigR)féor
holes.

6.2. J(K) in identical, parabolic bands

h2k?

To gain more analytical insight we now assume a perfect parabolic dispeith) (= Eo + 7+ and
Ec = %) and a momentum-independent resonance linewidtk)(= I'g). Equation9 can then be simpli-
fied to:

22
E Eo+ 2K —E
J(K) & U(EF — Ec(k)) T <atanr—0 _ atan%). (10)
0 0

Under the assumptions leading to ed®)(one can now show that(k) is monotonically decreasing as a
function of transverse momentum f&¢ < Ef:
dJk) k

X — " 2<0
dk 1+ (EFI(Ek)(k))

11

We therefore confirm the intuitive result that the current denkily) is peaked at zero transverse momentum

k and decreases monotonically withNote that this conclusion is only true for the restrictions of perfect

and identical parabolic dispersion in the resonance energy and the conduction band edge (the lower bound
for carrier injection).

6.3. Zone center current flow for electrons

To examine the derived analytical eq8$4nd (L0) for J(k) and to validate our numerical NEMO machin-
ery for J(k) we now compare the two for the electron RTD discussed previously in SetdoRigures9A
and B show the -V characteristit on a linear and logarithmic scale, respectively, computed with (solid
curve) and without (dashed curve) explicit transverse momentum integration at a temperature of 4.2 K. The
analytical Tsu—Esaki integration and the numerical integration give virtually the same result with an increas-
ing deviation for increasing voltages. This can be expected since the nonparabolicity overall is weak but
increases at higher energies as indicated in6Bg Again we refer the reader to the discussion of the validity

TFor simplicity and ease of comparison we use a linear potential drop in this computation as well as the hole simulation.
This simulation immot meant to quantitatively predict the current through a GaAs/AlGaAs RTD.
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above the Fermi level in the emitter (horizontal dashed line in C). Inset shows the same curves on a logarithmic scale.

of the Tsu—Esaki formula in Sectid The agreement between the Tsu—Esaki and full momentum integra-
tion in this case is purely due to the unphysical flat band in the emitter which produces 3D to 2D electron
tunneling.

Figure9C shows the transverse subband dispersion of the RTD ground state at the first resonance voltage
of 0.1 V. The numerical dispersion (solid curve) can be fitted to an effective mass of 0.0823 (empty circles)
which is slightly heavier than the bulk effective mass for this bandstructure model of 0.0678 (dashed curve).
This slightly heavier mass is another indication of the band nonparabolicity mentioned above. The inset in
Fig. 9C shows the relatively weak dependence (20%) of the ground state linewidth as a function of transverse
momentum. The dashed horizontal line indicates the Fermi level in the emitter. This horizontal line can be
thought of as the fill level of the subbands. The subbands are full of electrons below this level and empty
above. FigurédD compares the numerical curve dfk) obtained with NEMO at a bias of 0.1 V to two
curves computed with eg®) (long dashed curvd; andE, from Fig.9C) and eqn10) (short dashed curve,

m* = 0.0678,Eg ~ 22 meV, and"g ~ 0.57 meV). The inset shows the same curves on a logarithmic scale.
The three curves are indeed monotonically decreasing (see Sé@)onith the peak ak = 0. All three

show a particular sharp cut-off that can be associated with the rise of the resonance energy above the Fermi
level as indicated by the vertical dashed lines connecting %and D. It can be shown numericallgg]

that for all bias points] (k) is monotonically decreasing.

The qualitative and quantitative agreement of the zero temperature analytic expressions@)fatphd Q)
with the purely numerical result at 4.2 K confirms the validity of the analytic equations and the numerical



Superlattices and Microstructures, Vol. 29, No. 2, 2001 201

0 -&-HH Emitter A
= -@-LH Emitter
£ 3
8 -10 )
5 | i
8 &>ﬁ Fermi Sea
;é % HH2
20 5 -25F i
10 jan LHI1
C
_50 1 | | 1 | 1
ca T
S - ‘
<10 10—~ :
< 3 ™~ —
= EoT AN
‘B -2 = -_— - ! /
2107 £ HH2+¢ \ p
= =107 — HH2Y v ]
=] ) ! \
% ,| & HH24 +HH24 g A ,'
O10°[ — -HH24 1804 Yy
— HH2+ 8 Y b
o[ T Numerical A P -2 B . L
0.0 0.01 0.02 0.03 0.04 0.00 0.02 0.04
Transverse momentum k Transverse momentum k

Fig. 10. A, Transverse dispersion of the HK2| states (dashed curves) at a bias of 0.113 V. Solid curves are the 3D HH and LH
dispersions in the emitter filled with holes to the Fermi level (light gray area). Horizontal line is the emitter Fermi level. B, Numerical
J(k) (thick curve) compared to various analytic current components based o8)ettH1 (short dash), HH2 (long dash) and the

sum of the two (solid curve with circles). Inset: same as B on a linear scale. Skigrpurn-on atk ~ 0.016 corresponds to HH2

up-spin touching the Fermi sea. The first sharp cut-off corresponds to the lstd# crossing the emitter subband. The current is

carried completely by HHR. This current contribution turns off as the bulk emitter dispersion crosses the Fermi sea. C, Overview of
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machinery in NEMO. Deviations between the analytical and numerical results are due to the zero temperature
assumption of the analytical formulas. The following sections will utilize &yima(analyze spectral features
in J(k) for hole transport.

6.4. Off-zone-center current flow due to nonmonotonic dispersion

The discussion ofl (k) for electron transport revealed the importance of the crossing of the dispersion
curve with the Fermi level in the emitter for the cut-off of the current. With the nonmonotonic hole dispersions
shown in Fig.5 one can imagine that a resonance that is outside the Fermi sea at zero transverse momentum
dips into it atk > 0 and then leaves the Fermi sea again as the transverse momentum is increased. This basic
mechanism is the theme of Fi$j0 where the numerical (k) is compared to the analytical expression in
egn (0).

Figure 10C provides an overview of the energy scales of the subbands that might be involved in hole
transport at a bias of 0.113 V (compare to R&). The emitter valence band edge is set to be the zero-
energy origin. The emitter hole states are occupied in a narrow energy range below the valence band edge as
indicated by the shaded area. The HH1 subband is pulled above the valence band edge and cannot conduct
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holes. The LH1 subband is too far below the Fermi sea to conduct. Only the HH2 subband is within reach of
the shaded Fermi sea.

Figurel1O0A is an expanded view of Fid.0C in the energy range around the Fermi sea. It shows the HH2
and HH2 | dispersion as dashed curves. The solid curves with the circles indicate the HH and LH bulk
dispersions of the emitter. The horizontal line indicates the hole Fermi level in the emitter.

Figure 10B compares the numerically obtainedk) (thick solid curve) to three components HH?2
HH2 |, and the simple sunp, 39 HH2 4+ + HH2 | computed with eqn9) using the dispersion infor-
mation aboutEg, Exn emitter andI” in Fig. 10A and DI The qualitatively excellent agreement between the
numericalJ (k) and the HH2{ + HH2 | analytical result is quite striking).

At zero transverse momentum both states HHa&nd HH2| are below the Fermi sea in the emitter.
Only the long Lorentzian tails of the resonances conduct a current. The sharp turk-en @016 can be
associated with the HH2 touching into the Fermi sea due to the nonmonotonic dispersion. The current is
dominantly carried by this channel. At a transverse momentukre0.0235 the HH2¢ dispersion crosses
the bulk (3D) HH in the emitter. Beyond that crossing point no energy and momentum conserving hole 3D to
2D transitions can be found and the HHiZhannel turns off. Only the HHZ2 is left to conduct through its
Lorentzian tail. This conduction channel is finally shut off as the bulk (3D) HH emitter dispersion is below
the Fermi energy and cannot supply any more carriers at a transverse momentum &f~=akb0R7.

Figure 10D shows the momentum dependence of the resonance linewiddfisgiH2 that is needed for
the evaluation of eqroj. The HH14 shows an interesting large (three orders of magnitude) dependence of
the resonance linewidth. A more detailed discussion of the resonance linewidth dependence is deferred to
AppendixB.

Figure10A shows the LH emitter dispersion for reference. If egnwere to be used with the LH emitter
dispersion instead of the HH dispersion f6¢ one could notachieve the agreement between the analytic
and the numerical (k) as shown in Figl0B. J(k) would turn off atk ~ 0.012 at the crossing of the LH
emitter subband with the Fermi level. The current flow at a bias of 0.113 is completely due to carriers that
are injected from the HH states in the emitter.

Looking at Fig.10 as a whole we can clearly see how the nonmonotonic behavior of the hole dispersion
can create current features that are sharply spiked in the transverse momentum dependence. The following
two sections will describe two other mechanisms that can generate similar spikgg.in

6.5. Off-zone-center current flow due to different emitter and quantum well effective masses

The previous section discussed how a sharply spiked current ddigkjtpatk > 0 can be generated by the
nonmonotonic hole dispersion. The current turns on as the quantum well dispersion dips into the Fermi sea
atk > 0. A current turn-off was observed when the well dispersion crossed the emitter dispersion. Quantum
well and emitter dispersion crossings can occur even for simpler, almost parabolic, dispersions. In particular
this can occur if the effective mass in the quantum well is significantly smaller than in the emitter. 11 Fig.
it is shown, how monotonic differently sloped dispersions can result in similarly sgikedcurrent turn-ons
and turn-offs. Similar to Figl0 the shape of the current densilyk) is dominated by the crossings of the
quantum well dispersions and the emitter dispersion with each other and the Fermi level in the emitter.

At a bias of 0.048 V the main current contribution is due to tunneling through the HH1 states as indicated
in Fig. 11. The current through HH2 states must be included to explain the background current density of

Tinstead of re-deriving a formula for the hole case we just change the sign on all the energy scales for the hole dispersions.

*The agreement is particularly surprising considering that we simply add two Lorentzian shaped transmission channels,
without performing a more exact expansion on the corresponding transmission coef#6j@8}.[The deviation between

the full numerical result and the semi-analytical result is associated with the simple Lorentzian lineshape and the zero
temperature assumption.
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J(Kk) that is not due to the HH1 states. The dramatically different resonance widths of the HH1 and HH2
states are shown in Fig.1D. A more detailed discussion of the dependence of the resonance widths on
transverse momentum and bias is deferred to Appedbhe four analytic current contributions are simply
added up assuming independent Lorentzian linesh&6389]. The agreement between the numerically and
analytically obtained (k) in their shape over several orders of magnitude is astonishing.

Similar to the case at 0.113 V in the previous section, we again find at the bias of 0.048 V that the current
flowing through the structure is dominated by the HH emitter injection.

The phenomenon of crossing quantum well and emitter dispersions is not limited to hole transport, but
it is indeed quite common for high-performance InP-based resonant tunneling di@iieghere the well
might contain InAs, while the emitter is typically InGaAs with a larger effective mdds42]. We have
seen this effect of nonzone center current flow in direct bandgap electron devices in such InGaAs/AlAs/InAs
high-performance RTD systems.

6.6. Off-zone-center current flow due to resonance linewidth modulations

The previous two sections explained how crossings between emitter dispersion, quantum well dispersion,
and emitter Fermi level can lead to current flow that is dominant (sharply peaked) off the zone center in a nar-
row momentum space. This section will demonstrate how the strong dependence of the resonance linewidth
can induce similar off-zone-center current flow.

The insert in Fig12C shows the dispersion of the lowest eight states at a bias of 0.168 V. The shaded area
indicates the width of the Fermi sea in the emitter from which holes can be injected. Only the LH1 states
are in the energy range that can provide significant conductance through the structurel PAgsinews the
LH1, HH emitter, and LH emitter dispersions as well as the emitter Fermi level. Given this dispersion one can
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overview of the quantum well dispersion at this bias. The gray shade indicates the Fermi sea.

expect current flow through the LH1 state by injection from either the LH or HH states in the emitter. Current
flow is expected to cease as a function of transverse momentum as the quantum well and emitter dispersions
are leaving the Fermi sea, similar to the electronic case presented i8.Fitperefore a monotonically
decreasing current density similar to F8P could be expected. However, the resonance widthaf the

LH1 states show (see Fi@2C) an increase by over two orders of magnitude in the transverse momentum
range of interest. This increaselinleads to a dramatic increase in the current denkil) as indicated in

Fig. 12B.
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Unlike the previous two sections where only the carrier injection from the HH emitter dispersion needed
to be considered, carrier injection from both, the HH and LH dispersion in the emitter is considered in this
case (full and open circles, respectively). The emitter HH contribution is weighed by an arbitrary factor of
0.2 compared to the emitter LH contribution to best match the lower lying shouldler #.02. At a bias of
0.168 V most of the current is due to injection from the LH emitter subband. Injection from the HH emitter
subband only provides a background that is visible on the logarithmic scale dfZHg.

Note that the turn-on inJ(k) appears smoother on a linear scale (inset of ERR) compared to the
previous cases (see the inset in F@B and Fig.11C). This is due to fact that the turn-on is generated by
the smooth increase in the resonance linewlidtnd not by a crossing of the various dispersions with the
Fermi level. Also in this case the agreement between the numerical and the semi-andiyjdal quite
remarkable.

6.7. Current flow dominated by HH injection

The previous three sections showed for three different bias points that the current flow through HH/LH
states in the quantum well is dominated by injection from HH/LH states in the emitter, respectively. The
purpose of this section is to show that this same-state-injection dominance is in general not true, but that the
current is mostly dominated by HH injection from the emitter over a large voltage range.

Figure13A compared —V characteristics calculated completely numerically with NEMO and analytically
from eqgn @). To obtain anl -V across a voltage range using e@ ¢ne must have a complete transverse
dispersion including the resonance energy as well as the resonance linewidth as a function of bias. The
dispersion may change beyond the simple shift in energy with the applied bias due to the changing coupling
to the leads as the emitter/collector barrier becomes more/less opaque with increasing bias. This change in
coupling will mostly affect the resonance widths. (For a more detailed discussion of the bias dependence of
the dispersion see AppendixandB.) Instead of using NEMO to compute the dispersion at every bias point
we have used only two dispersions at a bias of 0 V and 0.2 V and interpolated from these dispersions for all
the bias points in the voltage range 0-0.3 V and applied the simple shift in energy of half the applied voltage
in electron volts due to our simple linear drop potential.

In the application of eqn9) we have included the lowest eight resonances and have treated them inde-
pendently of each other assuming a Lorentzian lineshape as we have done in the previous three sections. All
the resonances are assumed to couple edualihe LH and the HH emitter states. The complete analytic
and numerical =V characteristics are normalized to a peak value of one. The good agreement between full
numerical solution and the analytic solution based on 8yis(@stonishing.

The thin dashed curve shown in FIBA shows the analytic current contribution due to emitter LH band
injection only. Considering the LH injection alone underpredicts the current by several orders of magnitude,
we therefore conclude that most of the current is carried due to HH emitter injection. This is somewhat of
a surprise since the barriers are much more opaque for HHs than LHs. This dominance of the HH injection
underlines the importance of the band mixing due to the heterostructure interface.

Figure13B and C show the dependence of the current derdiky versus applied voltage and transverse
momentum for HH and LH injection computed from e@®).(The HH/LH injectionJ (k) cut-off at a trans-
verse momentum of 0.012/0.027, respectively, corresponds to the crossing of the LH/HH emitter with the
Fermi level (see, for example, Fi2).

The solid curves in these plots show the fiklshoment k; = fol kJdk/ fol JdK) of the current density in
the transverse direction. Off-zone-center current flow dominates wherever the first moment exactly follows
the center of the distribution (red streaks). The dominant current flow is at the zone center when the first

TUnlike the single example shown in Secti®:b.
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moment is independent of the voltage. From Fig. 13C one can therefore conclude that the current flow is
off-zone-center for most of the bias range.

Figure13D compares the two individual first moments.dfk) from Fig 13B and C to each other and to
the first moment of the total current density. Again the dominance of the HH injection over the LH injection
is dramatically displayed. Also, this figure shows again the extent of the voltage region in which the current
flow is dominated by off-zone-center processes.

This section presents dr-V calculation that is purely based on the analytic eégnafrd two numerical
dispersions at biases of 0 and 0.2 V. This procedure speeds up the time needed to computel a\single
simulation by at least three orders of magnitude. This speed-up enables us to compute htiphearac-
teristics for various parameters that do not change the central resonance dispersion.

7. Fermilevel dependence

Sections5.4-6.7 show that the crossing of the various central resonance and emitter subband dispersions
with the Fermi level in the emitter produce sharp turn-ons and turn-offs in the current dégisjtyand
ultimately in the fully integrated current. All the previous discussions assume a fixed Fermi lev&ihoé8.

This section examines the dependence of the overall current on the Fermi level in the emitter. The current is
computed using the same semi-analytical approach as presented in the previous sectiod4Righmvs

two |-V characteristics computed for Fermi energies of 5 and 20 meV. The increase of the Fermi level
clearly raises the overall current by more than one order of magnitude. It also broadens out the individual
current peaks significantly. That effect can be associated with the much larger k-space in which transport
through nontrivial subbands can take place. This trend is strikingly similar to the +Wocharacteristics

shown in Fig.8A which discussed the proper integration over the k-space. Again we can show the Tsu—Esaki
approximation to be limited to a small Fermi level. The overall increase in the current with the Fermi level
increase is understandable in the context of an increased occupied k-space in the emitter.

Figure 14B shows the spreading out and increased amplitude of the current peaks in a contour plot as
a function of Fermi energy. The current turn-ons move to smaller voltages with increasing Fermi levels as
expected, since the resonances touch the Fermi sea at smaller voltages. However, the different states show two
different turn-off dependencies with the Fermi level. The turn-off of the second and fourth current peak (HH2
and HH3) are independent on the Fermi level while the turn-offs of the first/third current peak HH1/LH1 show
a weak/strong dependence, respectively. These HH1/LH1 turn-offs move to higher voltages. This behavior
can be understood in terms of turn-ons and turn-off§ @d.

Figure11A shows that thel (k) turn-off of the HH1 state (first current peak in FIyB) is determined by
the crossing of the resonance subband with the Fermi energy. As the Fermi energy is increased the turn-off
moves to a larger transverse momentum which in turn increases the area under thigku¢vey. 11B). The
J(k) turn-on is determined by the crossing of the central resonance with the HH emitter dispersion where
the central effective mass is smaller than the emitter effective mass. Increasing the Fermi level increases the
voltage range where such a turn-on can happen before the dispersions have crossed the Fermi level. The
effect is larger for the LH1 state than the HH1 state since the difference to the HH emitter mass is more
significant.

The turn-offs of peaks 2 and 4 in Fit/4 are independent of the Fermi level since these peaks correspond to
HH2 and HH4 which are characterized by an almost flat transverse dispersion (sS&®)Fitheir condition
for current turn-off inJ (k) is not influenced by the Fermi level.

8. Current-voltage temperature dependence

All of the 1 -V characteristics discussed in the previous sections were computed at a temperature of 4.2 K.
As the hole temperature is increased for a given Fermi level, more holes are thermally excited above the Fermi
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Fig. 14. A, |-V characteristic for two different emitter Fermi levels (5 and 20 meV). B, Logarithir-gfcharacteristics as a function
of Fermi energy.

level in total energyE as well as transverse momentlmrhek ~ 0.027 cut-off of J(k) at a temperature

of 4.2 K (see Fig.8), is pushed to about ~ 0.08 at a temperature of 300 K. This increased range of
carrier injection in the transverse momentum space increases the number of channels that can propagate
holes through the structure significantly. This increased number of transmission channels is expected to wipe
out most of thel -V features that are visible at 4.2 K. Figuts shows a comparison of three differdrtv
characteristics computed at 4.2, 77, and 300 K. Indeed it is found that most of the sharp current features
vanish. However, this does not take away from the conclusion that most of the current is transported away
from the zone center. Indeed we verified (not shown here) in a plot similar t@Bithat the current) (k)

peaks outside the zone center.

9. Transverse momentum angle dependence

All of the previous discussions have considered the dependence of the carrier transport on the magnitude
of the transverse momentumhowever the dependence on the angleas been omitted. In all the previous
discussions the transverse momentum was considered only jdQBgedirection corresponding t¢ = 0.

Due to the rotational symmetry of the GaAs (zincblende) lattice one can expect a rotational symmetry every
90°T with a mirror plane symmetry along [110]. Figuté shows the transverse hole dispersion for these
two extremal momentum directiogs= 0 and¢ = 45. The subband dispersion appears to be only weakly
dependent on the angle

Figurel7 examines thé—V characteristic dependence on the transverse momentumdarfgigure17A

TZincblende is invariant under a rotation of°9@boutx, y, or z, followed by a reflection in the plane of rotation (plane
normal to the axis of rotation).
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Fig. 16. Hole dispersion fotp = 0 (solid curves) ang = 45 (symbols).

shows three different—V characteristics: two computed at a fix¢d= 0 and¢ = 45 using eqnZ) and one
based on an explicit integration over thecoordinate using egri). Only a small dependence on the angle
¢ can be found in the current peak that can be associated with the LH1 resonance 1FRjuegifies this
weak dependence on the anglén a contour plot over the angle range[6f. . . 45] with nine steps of size
5.625. This is the raw data that lead to the integration over the @nigl€ig. 17A.

From Figs16 and17 one can conclude that the assumption of angular symmetry that leads frorh)eqn (
to egn @) is well satisfied in the model system considered here. Only a relatively weak dependence on the
angle¢ is found. Only the third current peak (LH1) shows a weak dependence on the angle of incidence. A
stronger dependence could be expected in cases where more holes are injected at larger transverse momen-
tum magnitude, since that is where the dispersion differs more significantly. We checked this hypothesis by
comparingl -V characteristics computed at various angles at a temperature of 300K. However, only a small
dependence on the transverse momentum angle was found as well (not shown in a figure here).
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Fig. 17. Angular dependence of the resonant tunneling currenit—%, characteristic computed with eq®) (vith ¢ = 0 (black curve),
with ¢ = 45 (blue curve), and fulp integration with eqnX) (red curve). B, Current density(¢) as a function of applied voltage.

10. Comparison against experiment

Hole resonant tunneling diodes have been investigated experimentally in someddibtaiefative differ-
ential resistance and effects due to charge accumulation in the central RTD and emitter region have been ob-
served in a variety of different structures. Our previous research on electron transport RTDs hagisipwn [
that the proper modeling of the free charges inside and outside the central RTD are essential in the quantita-
tive prediction of thel -V characteristics. To simplify the comparison against experimental data we pick an
experimental data set that is weakly dependent on the charge accumirati@the central RTD. Hayden
et al. [44] studied the effect of charge accumulation and intrinsic bi-stability in an asymmetric RTD. Their
structure is described as ‘a 4.2-nm GaAs quantum well formed between two AlAs tunnel barriers of thickness
4.5 and 5.7 nm. Undoped spacer layers of thickness 5.1 nm separate the two tunnel barriers from Be-doped
contact layers in which the doping is graded from 50t ’cm~2 to 2 x 10'8cm3 over a distance of 200 nm’.
The mesa size is assuniéalbe 100um. Figure18shows the forward bias data taken from Fig. 2 of Ré] [
in a solid line on two different voltage scales. In that bias direction no charge accumulation is evident in the
central RTD since the escape rates through the collector barrier (4.5 nm) is larger than the entry rate through
the emitter barrier (5.7 nm). NEMO allows the user to choose a variety of different electrostatic potential
models. The Thomas—Fermi model assumes a semi-classical free charge distribution in the leads and a zero
free charge in the nonequilibrium region. This model leads to simulation redpfighat provide reasonable
insight into the device performance as long as the charge accumulation in the RTD is negligible. Effects due

R.K. Hayden, private communication. The mesa sizes used in the experiment have diametgrmf 100
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Fig. 18. A, |-V characteristic (solid curve) for an asymmetric hole RTD from R&f] ompared to our simulation result scaled down
by a factor of 20.0 (dashed curve). B, Same as A in a larger voltage range.

to the quantization in the emitter noteh f44] are neglected in the free charge calculation. The Hartree charge
self-consistent potential model was not used in the simulations shown here to reduce the required CPU time.

We entered the structure as described by Haydeah [44] into NEMO, chose an optical relaxation rate of
24 meV in the contact regiond]f and used the same second-nearest neighbor sp3s* model as in the rest of
this paper. The resulting-V characteristic is compared to the experimental data inJ8gThe simulation
results have to be scaled down by a factor of 20.0 to be compared to the experimental data on a linear
scale. While such a deviation might sound large we point out here that such a deviation is not completely
unexpected. We have verified with NEMO that variations of 2—3 monolayers in the barrier thickness and
variations in the doping profile detail can result in such current density variations of factors of 20. We feel
that such deviations can only be eliminated in a controlled test m&riof [experimental structures where
experimental trends can be analyzed in more detail. Such a controlled comparison between experiment and
theory is not the point of this paper here.

One question raised by Hayde®] was the lack of a HH1 resonance in theV spectrum. Our simulations
suggest that the HH1 peak is in the scattering enhanced large tail of the HH2/LH1 peak.

The main point of the paper that the dominant current flow through the structure ocdurg & has
been verified for the experimental structure with a similar plot to B&j(not shown here). A Tsu—Esaki-
type analytical integration cannot possibly provide the proper insight into the transport channels through this
experimental structure. This point can also be made by plotting the data on a logarithmic!8taimilar
to Fig. 8A together with a Tsu—Esaki integration result.

The comparison in Figl8 shows clearly that the simulation is clearly deviating from the experimental
results in the valley currents. We attribute this to the lack of incoherent scattering in the central RTD in
our simulation. At this stage NEMO can only simulate interface roughness, polar optical phonon, acoustic
phonon and alloy disorder scattering in a single-band m@&idl(]. Such a single-band model is, however,
incapable of incorporating the HH, LH and SO hole band interactions which are the first-order effects that
establish the coherent channels through the central RTD.

For pure electron transport in RTDs it has been sho8#1(] that at low temperatures bandstructure
effects are negligible and scattering processes due optical phonons and interface roughness are dominant.
As an overall conclusion to the the comparison to experimental data we submit that at low temperatures the
inclusion of full bandstructure (not just single bands) and scattering is essential to completely model the
current flow through a hole RTD.

11. Summary

This work demonstrates four key findings: (1) the HH and LH interaction is shown to be strong enough to
result in dominant current flow off thE zone center, (2) explicit inclusion of the transverse momentum in
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the current integration is needed, (3) most of the current flow is due to injection from HHSs in the emitter, and
(4) the dependence on the transverse momentum arigleeak. An analytic formula for the current density

J(k) as a function of transverse momentkrhas been derived and utilized to explain the three mechanisms
that generate off-zone-center current flow: (1) nonmonotonic (electron-like) hole dispersion, (2) different
quantum well and emitter effective masses, and (3) momentum-dependent quantum well coupling strength.
The analytic expression is also used to generate a coniptteharacteristic that compares well to the full
numerical solution based on two single transverse subband dispersions at different voltages. The Fermi level
and temperature dependence on Ith¥ is examined. From a comparison of a simulation to experimental
data it is concluded that the inclusion of full bandstructure as well as incoherent scattering is needed to
completely model -V characteristics in RTDs.
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Appendix A. Dispersion bias dependence

Figure 8B shows the current density(k) as a function of bias. The streaks which correspond to high
current densities resemble the transverse momentum dispersion if the voltage axis is scaled to energy by a
factor of two. Sectio® shows through an analytic formula that the mapping of the transverse dispersion to the
current density (k) is not exactly trivial. Current contributions are derived from a narrow energy range in the
emitter & —8...0 meV) as the transverse dispersion is dragged through the Fermi sea with increasing bias.
The resulting current density can be seen as a convolution of the dispersion in this energy range. To underline
this point Fig.19 shows the dispersions for three different bias points at 0.0, 0.2, and 0.4 V energy shifted
by 0, 0.1, and 0.2 eV, respectively. One can observe that the spin splittingases as the bias is increased
due to the increasing asymmetry in the Hamiltonian. The general shape of the dispersions remains the same.
The strongest deviations can be seen for higher biases for the HH1 and HH2 states. This is attributed to the
vanishing coupling to the emitter, the quantum well turning more into a triangular shape, and the collecor
barrier being lowered. The imaginary bandwrapping from the conduction band to the valence band (see, for
example, Fig. 7 in Ref7]) combined with the changing potential profile change the confinement significantly
with applied bias. Such changes also have a profound influence on the resonance linewidth as discussed in
AppendixB.

TThe asymmetry of the applied bias has split the two spin states. Note that there is no magnetic field selection in these
simulations. The spin degenerate statels at 0 are split due to the translational symmetry breakinkg at 0. We use

the notationt, | as a shorthand to identify the two states. Since there is no selecting magnetic field we assume that, for
example, LH1t consists of a linear combination of up and down spins.
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Fig. 19. Transverse subband dispersions for three different applied biases. 0.0, 0.2 and 0.4 V are depicted in solid lines, crosses, and
dashed lines respectively. The energy scales are shifted by an energy corresponding to half the applied voltage. A, All the dispersion
curves. B, same as A but, HH1 and HH2 for the 0.4 V dispersion eliminated. Spin splitting increases with increased bias, but general
dispersion curve remains unchanged.

Appendix B. Resonance linewidths

Figure20 sheds light on the interaction of HH and LH states and their coupling to the leads as a function
of transverse momentum. Figu28A shows the subband dispersion previously shown in Bigad5B in
a smaller energy and transverse momentum range. Only the four top most states including the spins are
depicted. From our analysis in Fi§.we can identify the two top most states as HH1. The shape of the
dispersion of the two other states (in Fig. 20A) suggest that they should be associated with HH2 as discussed
with Fig. 5 in Sectiond.3. However, Fig.2 in Section4.2 identified the second state as LH1 by its nodal
symmetry and resonance linewidth. Figld@ shows the associated resonance linewidths as a function
of transverse momentum of the first four states. The two highest states (HH1) show the expected narrow
linewidths of about 108 eV at zero transverse momentum. However, the next two states have resonance and
linewidths of about 5« 10~* eV which is indicative of the LH states. Figurgshow an anticrossing of HH2
and LH1 at zero transverse momentum. This strong coupling results in the LH-like resonance width at zero
transverse momentum. We therefore label the second states RORigs HH2+ LH1.

Figure20A also shows an anticrossing at a transverse momentum of about 0.022. This anticrossing has a
very dramatic impact on the HH1 coupling to the leads as indicated by the large increase of the resonance
linewidth by about three orders of magnitude compared to the zero transverse momentum result. This large
increase in the resonance linewidth for this particular channel can result in a significant current increase
as discussed in Fid.2in Section6.6. This strong coupling will only have an impact if there is a significant
number of carriers at the transverse momentum of 0.025. This is the case as the Fermi level or the temperature
is increased as discussed in Secfion

Appendix C. Material and sp3s* model parameters

The bandstructure and in particular the anisotropy of the hole bands in GaAs and AlAs has been studied
extensively experimentally as well as theoreticaB¥|[ Table1 compares several band edges and effective
masses from published data tabl85][to values computed using the sp3s* second-nearest neighbor tight-
binding model with the parameters listed in TaBle

The complete parameter list of the second-nearest neighbor model used in this publication is listed in
Table2. To achieve better fits to the experimental effective masses and bandgaps we have dexg|dgkd [

a genetic algorithm based procedure. The parameters used here have been optimized by3Bloyking
analytical insights.
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Fig. 20. A, Same hole dispersion shown in FEB in a smaller energy and momentum range. Only the four lowest energy hole states

are shown including the spin. B, Resonance linewidth of the states in A. The HH1 states show a variation of the resonance linewidth
of several orders of magnitude as a function of transverse momentum. The mixed state flH2) shows a reduction of resonance

width by about an order of magnitude. The resonance interact very strongly at the anticrossing-pdit@22. C, D, Same as A, B

at a bias of 0.113 V. Increased asymmetry through bias increases the spin-splitting of the states and modifies the coupling to the leads
strongly.

Table 1: Simulated effective masses and band edges for GaAs and AlAs based on
the sp3s* second-nearest neighbor tight-binding model compared to experimental
and theoretical data from ReBY).

GaAs AlAs
Property exp. sim. % dev exp. sim. % dev
E§ 1.4240  1.4240  0.00 3.020  3.0217  0.06
Aso 0.3400 0.3664  7.76 0.300 0.3377 126
mi. 0.0670 0.0679 1.31 0.150 0.1574  4.95
m,[00] -0.0871 -0.0708 18.7 —0.163 —-0.1475 9.52
mi,[01] —-0.0804 -0.0662 17.7 —-0.140 -0.1259 10.1
mi,[11] -0.0786 -0.0649 17.5 —-0.135 -0.1212 10.3
mi,[001] —0.4030 -0.4105 1.87 —0.516 —0.4782 7.33
mi,[01] —0.6600 -0.6929  4.99 -1.098 -1.0788 1.75
mi,[11] —0.8130 -0.8750 7.63 —-1570 -1.6206  3.22

mé, —0.1500 —-0.1440 3.98 —0.240 —-0.2456 2.33
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Table 2: Second-nearest neighbor tight-binding model pa-
rameters used in this paper for GaAs, AlAs, angd fBaAs.
All parameters are in units of eV.

Parameter GaAs AlAs AlyGaAs
Esasa000 8384281 —7.520109 —8.038610
Epa, pa(000 0.490469  0.341561  0.430906
Escsc000  —2.758331 —1.797609 —2.374040
Epc, pc(000) 3670469  2.803311  3.323610
Esasa(000 8590469  7.195801  8.032600
Escsc(000 6720469 5719251  6.319980
Vsasc(333)  —6.460530 —7.160000 —6.740320
111
Vix(333) 2260950  1.940000  2.132570
111
Viy(333) 5.170000  4.500000  4.902000

%%%) 4.680000  5.072000  4.836800

31 %) 8.000000  8.000000  8.000000
111

Vsapc(333) 4650000 3280000  4.102000
111
222

Vpastc 6.000000  1.750000  4.300000
Asaa/3.0 0.140000  0.140000  0.140000
Asac/3.0 0.058000  0.008000  0.038000
Vsasa(110 ~0.010000 —0.010000 —0.010000
Verasra(110) 0.000000  0.000000  0.000000
Vsasa(110 0.000000  0.000000  0.000000
Vsaxa(110) 0.050000  0.040000  0.046000
Vsaxa(011) 0.058000  0.040000  0.050800
Vsa xa(110 0.020000  0.020000  0.020000
Vs+a xa(01D) 0.040000  0.100000  0.064000
Vxaxa(110 0.320000  0.376900  0.342760
Vya xa(011) ~0.050000 —0.200000 —0.110000
Vya ya(110 0.640000  1.200000  1.008000
Via ya(01D) ~1.000000 —1.200000 —1.080000
Vscsc(110) —0.020000 —0.010000 —0.016000
Ver.s7c(110) 0.000000  0.000000  0.000000
Vscere(110 0.000000  0.000000  0.000000
Vscxc(110) 0.072000  0.073000  0.072400
Vscxc(011) 0.020000  0.040000  0.028000
Vsec.xc(110 0.010000  0.030000  0.018000
Vstc.xc(01D) 0.093500  0.030000  0.068100
Vye.xc(110) 0.280000  0.495350  0.366140
Vxexc(011) —0.100000 —0.166950 —0.126780
Vi yc(110 0.200000  0.970000  0.708000

Vxc,yc(011) —1.300000 —2.200000 —1.660000
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